Power and Network-Aware Software Infrastructure for Multiplayer Mobile Games

Profiles of Excellence Talk
Rajesh Krishna Balan

Tan Kiat Wee†, Karthik Thirugnanam†, Bhojan Anand‡, Jeena Sebastian‡, Pravein G. Kannan‡, Akhihebbal L. Ananda‡, Mun Choon Chan‡

† Singapore Management University (SMU)
‡ National University of Singapore (NUS)
Key problem and Solution

• Problem: Display draws significant phone power

![Display 45-50% Network 35-40% CPU 4-15%]

 measured on HTC Magic while streaming a Youtube Video

• Key Challenge: No loss in end user experience
Two Types of Displays

• LCD – Liquid Crystal Display
 – Backlight shines through filter to produce images
 – Used on many phones, tablets, laptops (iPad etc.)

• OLED – Organic Light Emitting Diode
 – No backlight
 – Individual LEDs light up based on image being displayed
 – More power efficient
 • Still can be improved.
LCD Displays Made Easy

- LCD displays have two components:
 - Backlight - Provides light, and consumes power
 - LCD Panel - Filters light based on image to be displayed

- Power consumed mostly by the Backlight
- Thus brightening the image, and darkening the backlight saves power
Solution and Results - Primer

- Dynamically adjust image brightness and LCD display backlight levels

- 50-70% display power savings with no significant user experience impact
Background: Saving Display Power

- Method 1: Naively dim the display
 - Creates visible artifacts (flicker, brightness loss, etc)
 - Especially noticeable in high frame rate applications
Background: Saving Display Power

- Method 2: Adjust by increasing brightness
 - Linearly apply same transform to entire image
 - Leads to saturated images
Method 3: Method 2 + Non-Linear Adjustment

– Non linear approaches prevent saturation but cause contrast loss

• Our solution uses this approach intelligently
Non Linear Gamma Correction

• Gamma Correction, or gamma, is a tone mapping function used to brighten scenes
 – Very Low Saturation relative to linear
 – Low computational overhead

Before After: Gamma 2
Effect of Gamma on Image Quality

Original

Image after Gamma Increase (gamma=2)

Image after Gamma Increase and backlight reduction
Test Applications

- Games are popular and resource intensive
 - Extremely high frame rates
 - Flicker and brightness changes very noticeable to users

- We use two representative games
 - Quake III – Commercial First Person Shooting (FPS) game
 - Planeshift – Massively Multiplayer Role Playing Game (MMORPG)
System Design: Key Challenges

- Ultimate goal: Save significant power with no loss in end user experience

- Challenge 1: Understanding the relationship between the backlight intensity, gamma, image brightness, and the power consumed

- Challenge 2: Identifying human thresholds for brightness compensation

- Challenge 3: Dynamically applying the solution
Challenge 2: Human Thresholds

• Obtained via small user study
 – 5 postgraduate students

• Each user shown a range of images
 – Covered a full range of brightness

• For each image, users had to boost gamma to obtain two quality thresholds
 – Described in next slide
 – Tool provided boosted gamma at .1 intervals with automatic backlight compensation
Challenge 2: Two Thresholds

- **Conservative**: Image quality comparable to original
- **Aggressive**: Image quality is affected but acceptable

![Graph showing Gamma Value vs Image Brightness Levels (Darkest to Brightest)]
Challenge 3: Runtime Algorithm

Start

Calculate Average Brightness of last X Samples. Is there a change?

Yes
Mode + Brightness -> Gamma & Backlight

No
Leave Settings as it is

Sleep Thread for Y ms
Evaluation Methodology

• Objective Analytical Experiments
 – Power measurements on phones and laptops
 – Measured power saved in different modes

• Perceived User Impact
 – Large scale user study (60 users) with Quake III
 – Measured perceived quality loss in different modes
Evaluation: Three Test Cases

Two bounding modes tested but omitted for simplicity

- Aggressive
- Conservative

Gamma Value vs. Image Brightness Levels (Darkest to Brightest)
Evaluation: Power Savings

- A recorded trace used to measure power

![Bar Chart](chart.png)

- Aggressive: 68%
- Conservative: 49%
- Default: 0%
User Study Methodology

• Large Scale User study
 – 60 Singapore Management University undergrads.
 – 34 Male and 26 Female students with differing background and game experiences

• Participants trained on an unmodified version of the game
 – They played the 3 different versions of the game
 – Play order randomized & recalibration at every step
Evaluation: User Study Results

- Users rated each version by 6 criteria
 – Covered different quality dimensions

```
Average Acceptability Score

Strongly Agree = 5
Neutral = 3
Strongly Disagree = 1

Aggressive
Conservative
Default

Good
Bad
```

School of Information Systems

SMU
Evaluation: Aggressive vs Conservative

- Difference between Aggressive and Conservative significant
Evaluation: Power vs Perception

- Difference betw. Conservative and Default
Evaluation: Conclusions

• Conservative (Dynamic Conservative)
 – High Quality
 • Perceived quality comparable to default.
 – Significant Savings – 49%

• Aggressive (Dynamic Aggressive)
 – High Power Saving – 68%
 – Acceptable Quality
But What About OLED Displays?

• Increasingly common on modern phones
 – Galaxy S2, S3, etc.

• LCD techniques don’t work
 – No backlight
 – Each “pixel” individually lighted
 • Red, blue, and green LEDs
 – Power consumption dictated by number of pixels lighted and colour used
 • Black is best
 • White is terrible!
Solution: Black out “Boring” Bits!

• Nexus One Resolution 800 x 400 (Landscape)
 – Locus of attention size is 300 x 180
 – Centered at coordinates 400, 200
Solution: Black out “Boring” Bits!

- Dim around locus of attention
- Gradual dimming to edge
- Heuristic: Edges still visible with content
Solution: Black out “Boring” Bits!

- Dim around locus of attention.
- Gradual dimming to edge.
- Heuristic: Edges still visible with content.
Applying The Technique

Users Starts Game

Power Normal Mode

User Stationary

Power Saving Mode (Gradual Dimming/Brightening)

User Moving/Panning
Technique In Action

User interaction on the mobile device

What user sees
Results Summary

• Power savings are reasonable
 – 15% overall savings with optimisations

• Still work in progress
 – Apply technique to other apps
 – Reduce user impact
Problem Solved? No!

- Problem: The Network interface also draws significant phone power

- Key Challenge (revisted): No loss in end user experience
Key Idea to Save Network Power

- Put Network Interface to sleep
 - The packet that is not sent is a joule saved!
 - But need to make sure that no important packets are lost
What is an Important Packet?

• A packet is important only if it contains information about an opponent

 – But what does that mean for a game?
 • Too many cases to handle (shooting, running, idling, shopping, gossiping etc.)

 – Simplest Solution - If no opponent is visible, safe to sleep network card for some time
Challenge With This Idea

• We need to make sure no opponent can “see” the player while player’s network card is sleeping

 – Advanced Solution – Predict in advance all possible player movements and calculate maximum safe sleep time
Implementation

- Game area is discretised into 2D grid
- Grid element size is related to MAX distance traveled in a set interval of time.
- Game provides function to check visibility between two points
- Used to pre-compute visibility between grid elements
What Does This All Mean Visually?

Map Divided into 2d grid

Obstacles

Not Visible

Visible
What Does This All Mean Visually?

Position of player

1

2

3

Not Visible

Visible

Not Visible
What Does This All Mean Visually?

Possible position of the player in Δt, say 200ms.
What Does This All Mean Visually?

Players not visible to each other, but potentially visible in Δt.
What Does This All Mean Visually?

Player 1 not visible to others in Δt, safe to sleep for Δt
Evaluation and Results

- Performance depends on map size and number of players
 - On an average map, we are able to save up to 25% of network power with little noticeable impact to the game

- User study conducted to study impact
 - Performance of solution is generally good
 - Any artifacts only manifest when the player first comes into vision
The End

Questions?