Computer Generated Forces (CGFs) are artificial entities in tactical simulations modelled after human behaviour. In a previous project with DSO, Intelligent Computer Generated Forces (iCGF) with adaptive capabilities have been developed to provide a viable alternative to script-based CGF. Through reinforcement learning, these iCGFs are designed to acquire knowledge while interacting and operating in a dynamic environment. This project with DSO builds on the capabilities developed in the previous project to enhance the study of iCGF by considering the following two key research questions; 1. How to scale up the applicability of iCGF, in terms of the number of iCGF entities as well as their operability in more complex scenarios and; 2. How to interpret and demonstrate the knowledge learned by iCGF in the form of high-level description.
What determines the coverage of Covid-19 and related political contestation in traditional and new media? In collaboration with the University of Bamberg in Germany, this project sets out to identify hidden power structures between media organizations in contemporary hybrid media systems in Germany, UK, USA and South Korea. This will provide insights about the determinants of information quality and the spread of misinformation during a large social crisis in media coverage.
This project addresses the inefficiencies in the lead generation, prospecting, engagement and qualification processes which are important stages in the acquisition of high net worth and ultrahigh net worth clients in a financial services business. The current process of digital leads generation and prequalifying is inefficient as it involves the manual qualification of large volumes of names collected from social media posts and marketing campaigns. Furthermore, client advisors do not have enough actionable insights on the leads provided by marketing and prefer to follow their own warm leads (e.g. networking) instead of the ones assigned to them. The objective of this project is to significantly improve the efficiency and effectiveness of these activities by adopting modern digital technologies including Artificial Intelligence models and Big Data analytics.
This research project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No. AISG-100E-2020-062).
Current code comparison technology mostly only work in a single language, failing to support inter-language migration. This project looks at closing this gap, through exploring new techniques for comparing code similarity across different languages and paradigms. Through this research, the team aims to improve the quality of software and reduce software development cost.
This project addresses the inefficiencies in the KYC (Know Your Customer) and Due Diligence processes which are critical yet resource-intensive activities in a financial services business. These activities are particularly complex in the context of Wealth Management, as compared to retail banking, where the client profiles of high net worth and ultrahigh net worth individuals are typically associated with a wider multi-national network of other family and business relationships and company structures and entities which need to be considered holistically in order to build a full understanding of their profile. The objective of this project is to significantly improve the efficiency and effectiveness of these activities by adopting modern digital technologies including Artificial Intelligence models and Big Data analytics.
This research project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No. AISG-100E-2020-058).
Under the Fujitsu-SMU Urban Computing and Engineering (UNiCEN) Corp Lab, SMU has undertaken the Digital Platform Experimentation (DigiPlex) project with Fujitsu. The project was carried out using the Digital Annealer (DA), a quantum inspired-technology inspired by Fujitsu. Through the DigiPlex project, certain challenges in solving constrained optimization problems using such technology, and promising methods on tuning of the underlying model parameters to improve run time performance, have been identified. This project aims at developing hyper parameter tuning methodology, machine learning techniques, operations research algorithms, and software tools to enhance quantum-inspired techniques for solving large scale real-world combinatorial optimization problems.
This project aims to develop Fast-Adapted Neural Networks (FANNs) and provide specific solutions to equipping the Advanced Manufacturing and Engineering (AME) systems with FANNs. It considers a wide range of AME application examples such as visual inspection of new product parts and automated identification of product defects. It will improve the yield rate and reduce manufacturing costs, when FANNs-based devices are widely installed in the design, layout, fabrication, assembly, and testing processes of production lines. This research is supported by A*STAR under its AME YIRG Grant (Project No. A20E6c0101).
This collaboration with Coleridge Initiative aims to develop entity linking models that automatically identify datasets used in research publications to perform context-rich search and recommendation on research repositories.
Smart systems are increasingly dependent on machine learning frameworks for their feature implementation. These frameworks are built on top of many third-party libraries, which depend on many others. Simply trusting and reusing a framework poses a security risk as the framework and third-party libraries it depends on can contain exploitable vulnerabilities. To mitigate this risk, this project will create an advanced solution that identifies vulnerabilities in popular machine learning frameworks.
This research collaboration with Zhejiang University seeks to unlock the power of large software data stored in open software repositories for automating three common software development tasks: coding (code completion), commenting (code summarization), and identification of software defects (defect prediction).