In this digital age, advancements in artificial intelligence (AI) have brought about both great opportunities and significant challenges. One of these challenges revolves around the protection of personal data, particularly digital images, which can be exploited by AI technologies. The proposal focuses on addressing these issues by developing solutions that can safeguard the digital rights of individuals and protect their creations from potential misuse by AI technologies. It offers a 'cloak of invisibility' to your digital images, rendering them unexploitable by AI while retaining their visual appeal for human observers. The project aims to return control to the individuals, ensuring the protection of their art and their privacy in the digital world.
This research/project is supported by the National Research Foundation, Singapore under the AI Singapore Programme (AISG Award No: AISG3-GV-2023-011).
This project involves research and engineering effort to build an intelligent vulnerability discovery system, and to secure citizen data by addressing vulnerabilities in Government software and Digital Government services.
ZEASN Technology is a global leader in smart TV solutions since 2011, and it is headquartered in Singapore with a strong global presence. ZEASN's flagship product, Whale OS, powers 90 million devices globally for over 300 brands. The collaborative research between SMU and ZEASN Technology Pte Ltd is dedicated to developing an advanced Web 3.0 creative media content ecosystem. Emphasizing critical aspects like tokenomics, incentive design, and privacy-enhancing computation, the project’s our primary goal is to construct a future-proof digital framework that is user-friendly, secure, and maximizes user participation, privacy, and profit. Anticipated outcomes include a robust, efficient, and scalable Web 3.0 creative media content ecosystem, maintaining user privacy while fostering a dynamic, tokenomics-driven creative space. This comprehensive approach seeks to revolutionize how creative media is created, shared, and monetized, empowering users and content creators in the digital era. Leveraging combined expertise from economics, computer science, and digital media, the team we aim to design an ecosystem aligned with the values of the Web 3.0 vision: decentralized, user-centric, and privacy-preserving. An early harvest of this collaboration is addressing key challenges in the century-old film industry, with plans for a Web3-powered virtual cinema on ZEASN's worldwide Whale OS CTVs, aiming to decentralize film distribution and monetization in a transparent and rewarding fashion.
The global fintech landscape is undergoing a pivotal shift at its core, driven in part by advanced AI techniques. This project aims to: (i) understand the inner workings of diverse investment systems to assess their transaction patterns; (ii) create algorithms that decode fintech data, offering insights and aiding in market behavior predictions; and (iii) leverage optimization and AI methods to enhance trading and transaction systems.
This project, led by A/Prof Iris Rawtaer (SKH) aims to utilise multimodal sensor networks for early detection of cognitive decline. Under this project, the SKH and NUS team will oversee the project operations, screening recruitment, psychometric evaluation, data analysis, data interpretation, reporting and answer of clinical research hypotheses. The SMU team will collaborate with SKH and NUS to provide technical expertise for this study by ensuring safe implementation and maintenance of the sensors in the homes of the participants, provide the sensor obtained data to the clinical team and apply artificial intelligence methods for predictive modelling.
This project is set to advance the security landscape of emerging technologies in Web 3, including pattern and model-based fraud detection and knowledge graph-based reasoning, in order to address the various issues and chaos in the Web3 domain and establish a comprehensive set of compliance standards.
This project is a joint study between Deloitte and Touche, Institute of Singapore Chartered Accountants, Singapore Management University and Singapore Manufacturing Federation. The study aims to shed light on (1) the current state of play for integrating sustainability into corporate strategies and business models in Singapore’s manufacturing sector, (2) the sustainability opportunities and risks in the manufacturing sector, and (3) the skills needed to fulfil the emerging role of accountancy and finance professionals as champions of sustainability in the manufacturing sector, especially for small-and-medium enterprises. The research findings are expected to raise awareness of sustainability opportunities and risks for manufacturing companies and to encourage more accountancy and finance professionals to support companies in their sustainability transformation.
This is a project under the AI Singapore 100 Experiments Programme. The project focuses on the healthcare industry resource management where there is a complex relationship not just among the various manpower types (doctors, nurses) but also with the patient lifecycle leadtimes, geo-location, medical equipment and facility needed to perform surgeries and patient care. Manpower shortage has birthed conservative and static long-term planning solutions without considering these upstream data flows. In post-covid world today, this project could bring more potential solutions to the manpower allocation and development problem, especially when demand changes acutely. The project sponsor, BIPO Service (Singapore) Pte Ltd believes that an AI-driven, short-input-to-output cycle HR system streaming in “demand”-pulled patient lifecycle data can allocate and inform skills development not only for full time, but part time workforce.
This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-100E-2023-118).
Most conversational systems today are not very good at adapting to new or unexpected situations when serving the end user in a dynamic environment. Models trained on fixed training datasets often fail easily in practical application scenarios. Existing methods for the fundamental task of conversation understanding rely heavily on training slot-filling models with a predefined ontology. For example, given an utterance such as “book a table for two persons in Blu Kouzina,” the models classify it into one of the predetermined intents book-table, predict specific values such as “two persons” and “Blu Kouzina” to fill predefined slots number_of_people and restaurant_name, respectively. The agent’s inherent conversation ontology comprises these intents, slots, and corresponding values. When end users say things outside of the predefined ontology, the agent tends to misunderstand the utterance and may cause critical errors. The aim of this project is to investigate how conversational agents can proactively detect new intents, values, and slots, and expand their conversation ontology on-the-fly to handle unseen situations better during deployment.
This project will create new knowledge derived from historical sources to benefit the academic and scientific communities of Singapore in understanding long-term regional rainfall variability. This benefits Singapore by revealing long-term trends and extremes, critical to water security and climate-change preparedness now, and in the future. This benefits society by helping scholars and government in managing water-related risk. Principal Investigator: Holly Yang